If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+11y=-28
We move all terms to the left:
y^2+11y-(-28)=0
We add all the numbers together, and all the variables
y^2+11y+28=0
a = 1; b = 11; c = +28;
Δ = b2-4ac
Δ = 112-4·1·28
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-3}{2*1}=\frac{-14}{2} =-7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+3}{2*1}=\frac{-8}{2} =-4 $
| -1=-3u+5(u+3) | | 17/x+3/2=-16 | | 3y+6=5y*18 | | X3+6x2+5x=0 | | y2=+11y=-28 | | d/4+3=13 | | 2(x-5)=23 | | 3(y-7)-8y=19 | | 14x^2+35x=0 | | 32(x+7)=6(42x)+10x | | 6x-13=-37 | | 5x^2+14=9 | | y2+11y=-28 | | 26+n=20 | | 60+3s=180 | | -2x+10÷2=-8+4x÷-5 | | 2(x-1)+5=4-7(2x-1) | | (3x/7)+(7/5)=12 | | 2m+10=-16 | | (x+15°)+(3x-26°)+x=180° | | 5x=41(x+11) | | 7x+9=-89 | | 42+x=(8+x)/2 | | 42+x=8+x | | 1/4=-2-4x | | 16-(9x-5)-33=4(1-2x)+10 | | (2x+4)^2=2x(x-5) | | 11=-7x+3(x+5 | | 3z+20+19z=20z-20 | | 80x-10x^2=0 | | (4x | | 5x=6=66 |